

- - including fermentive / methanogenic conditions

Data Sources: references			
Field Data, Diffusive and Advective Columns, Batch Microcosms			
Field studies			
1. Christophersen, M., et al., J. Contaminant Hydrogeology, 2005, 81, 1-33.			
2. Fischer, M. L., et al., Environ. Sci. Technol., 1996, 30, 10, 2948–2957.			
3. Hers, I., et al., J. Contaminant Hydrology, 2000, 46, 233-264.			
4. Höhener, P., et al., J. Contaminant Hydrology, 2006, 88, 337-358.			
5. Lahvis, M. A., et al., Water Resources Research, 1999, 35, 3, 753-765.			
6. Lundegard, P. D., et al., Environ. Sci. Technol., 2008, Web 07/03/2008.			
Diffusive soil columns and lysimeters			
7. Andersen, R. G., et al., Environ. Sci. Technol., 2008, 42, 2575–2581.			
8. DeVaull, G. E., et al., Shell Oil Company, Houston. 1997.			
9. Höhener, P., C. et al, J. Contaminant Hydrology, 2003, 66, 93-115.			
10. Jin, Y., T. et al., J. of Contaminant Hydrology, 1994 , 17, 111-127.			
11. Pasteris, G., et al., Environ. Sci. Technol., 2002, 36, 30-39.			
Advective columns			
12. Salanitro, J. P., M. M. Western, Shell Development Company, Houston. 1990 , TPR WRC 301-89.			
13. Moyer, E. E., PhD Thesis, University of Massachusetts, 1993 .			
14. Moyer, E. E., et al., in In Situ Aeration: Air Sparging, Bioventing, and Related Remediation Processes, R. E. Hinchee, et al, eds., (Battelle Pres			
Columbus), 1995 .			
Microcosm studies			
15. Chanton, J., et al., at: PERF Hydrocarbon Vapor Workshop, January 28-29, 2004 . Brea, CA.			
16. Einola, J. M., et al., Soil Biology & Biochemistry, 2007, 39, 1156–1164.			
17. Fischer, M. L., et al., Environ. Sci. Technol., 1996 , 30 (10), pp 2948–2957.			
18. Holman, H. Y. Isang, Y. W., in In Situ Aeration: Air Sparging, Bioventing, and Related Bioremediation Processes, R. E. Hinchee, et al. eds.,			
(batterie rress, columnous), 1993, 523-532.			
13. Ostenidori, D. W., et al., Environ. SCI. IECHNOI. 2007, 41, 2543-2549.			
20. Salarinity, J. F., Western, M. Wi, Shell Development Company, Houston, 1906, HK WKC 101-86.			
21. Salanitty, J. r. Williams, W. F., Snell Development Company, houstoll, 1993, WTC RAB 4-93.			
22. Science Control Control Control Control Microbiology Sent 1993 2977-2983			
יין אין אין אין אין אין אין אין אין אין			

Building Foundation Types and Air Flow

- "Open / breezy" foundation: high airflow
- Raised buildings: on stilts, piles, piers:

 Due to unstable soils, wet soils (expansive clays, muskeg, bogs, swamps) or climate (air circulation, termites, flooding).

21

"Airtight" Foundations - limited airflow:

- Slab-on-grade. Basements.
- Crawlspaces.
 - Edge walls depth: frost heave
 - Influenced by capillary break or vapor barriers [moisture control]

Buildings may be "airtight" or "open / breezy" depending on soils. Suggestion: If unknown, choose nominal "worst case" for the area.

State Summary			
35 States with Vapor Intrusion Guidance			
Screening Values:			
<u>media</u>	<u>values</u>	range	
indoor air	0.084 to 4.98 ug/m ³	140x	
groundwater	2.4 to 3500 ug/L	1500x	
shallow soil gas	3.1 to 190,000 ug/m ³	61,000x	
Clearly, a lot of variability			
Eklund, B., L. Beckley, V. Yates, T. E. McHugh, Overview of State Approaches to Vapor			

Intrusion, Remediation, Autumn 2012, 7-20.

